Mercure dans l’océan Arctique : quand la toundra sert de passeur

Mercure dans l’océan Arctique : quand la toundra sert de passeur
Mercure dans l’océan Arctique : quand la toundra sert de passeur

Pourquoi l’océan Arctique et sa faune sont-ils si contaminés par le mercure, alors qu’ils sont éloignés des principales sources de pollution ? C’est cette vieille énigme que vient de résoudre une équipe internationale, impliquant notamment des chercheurs du CNRS, du Desert Research Institute et de l’Université du Colorado (États-Unis)  [1]. Ils démontrent que la végétation et les sols de la toundra séquestrent le mercure atmosphérique issu des activités industrielles des moyennes latitudes. Au printemps, lorsque la neige et le sol fondent en surface, le mercure piégé est libéré en grande quantité vers l’océan Arctique et s’accumule dans la faune marine. Ces conclusions, qui résultent de deux ans de mesures en Alaska, sont publiées dans la revue Nature le 13 juillet 2017.

Chaque année, nos centrales à charbon, activités minières et autres industries émettent des milliers de tonnes de mercure dans l’atmosphère. Dans le milieu aquatique, le mercure s’accumule dans les réseaux trophiques et des teneurs particulièrement élevées se retrouvent chez les grands prédateurs (morses, bélugas, certains poissons) ; leur consommation par les humains peut induire une neurotoxicité chez l’enfant et des maladies cardio-vasculaires chez l’adulte. Ces problèmes sont particulièrement préoccupants dans les milieux arctiques, où la contamination de la faune par le mercure est parmi les plus élevées au monde, alors que cette région ne contient que très peu de sources de pollution. Face à ce paradoxe, les scientifiques ont longtemps suspecté la voie atmosphérique : le mercure serait ainsi transporté depuis les moyennes latitudes vers les milieux polaires, où les précipitations sous forme neigeuse contamineraient l’océan Arctique. Une hypothèse progressivement remise en cause par la découverte que les fleuves apportent plus de mercure à l’océan Arctique que l’atmosphère.

Pour comprendre l’origine de ce mercure, Martin Jiskra et Jeroen Sonke, du laboratoire Géosciences environnement Toulouse (CNRS/Université Toulouse III – Paul Sabatier/IRD/Cnes) ont fait équipe avec des chercheurs basés aux États-Unis, dont Yannick Agnan, aujourd’hui au laboratoire Milieux environnementaux, transferts et interactions dans les hydrosystèmes et les sols (CNRS/UPMC/EPHE). En Alaska, ils ont mesuré les échanges de mercure entre l’atmosphère et la toundra, cette dernière étant caractérisée par un sol gelé en permanence en profondeur (pergélisol) et une végétation constituée de lichens, mousses, herbacées et arbustes. Alors que l’équipe américaine enregistrait les flux en mercure depuis l’atmosphère vers le sol, l’équipe française a comparé la composition isotopique  [2] du mercure dans les sols et la végétation à celle d’échantillons de neige et d’air ambiant, afin de percer à jour la dynamique du mercure dans cet écosystème et le mode de contamination de l’océan Arctique.

Les chercheurs ont observé que la végétation et les sols de la toundra séquestrent tout au long de l’année le mercure présent à l’état gazeux dans l’atmosphère, une tendance qui s’accélère lorsque la végétation est active en été. La toundra piège ainsi une importante quantité de mercure – entre le tiers et la moitié de l’ensemble du mercure présent dans les sols terrestres. Au printemps, lors du dégel du sol en surface, ce réservoir alimente les fleuves de la région, et par conséquent l’océan Arctique. Le mercure intègre ensuite la chaîne alimentaire… jusque dans nos assiettes.

Avec le réchauffement du climat, près de deux fois plus rapide en Arctique que dans le reste du monde, la fonte accrue du pergélisol risque de mobiliser des quantités plus importantes de mercure, contaminant encore davantage la faune arctique. Et ce, alors même que certains pays riverains souhaitent y exploiter de nouvelles zones de pêche.

Cette étude a été financée par le U.S. National Science Foundation, le U.S. Department of Energy, l’ERC, H2020 Marie Sklodowska-Curie, et le Chantier Arctique Français (projet  PARCS)

Notes

 [1] Autres institutions impliquées : l’Université du Massachusetts – Lowell et le Gas Technology Institute – Des Plaines (États-Unis).

 [2] Un élément chimique peut exister sous différentes formes appelées isotopes, qui diffèrent par la masse de leur noyau. La composition isotopique désigne la proportion des différents isotopes. Elle constitue une sorte d’empreinte permettant par exemple de remonter à la source d’une contamination.

Bibliographie

Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution, Daniel Obrist, Yannick Agnan, Martin Jiskra, Christine Olson, Dominique Colegrove, Jacques Hueber, Christopher Moore, Jeroen Sonke & Detlev Helmig.Nature, 13 juillet 2017. DOI : 10.1038/nature22997

Contacts: Jeroen Sonke et Martin Jiskra

Plus d'actualités

IR OZCAR : liens entre la diversité hydrologique et l’hétérogénéité de la zone critique

La zone critique est la partie la plus superficielle de notre planète où l’eau, les roches, l’air et la vie se rencontrent pour façonner notre environnement. Afin de mieux comprendre […]

De nouvelles découvertes révèlent les origines du courant le plus puissant sur Terre

Le Courant Circumpolaire Antarctique est le plus vaste courant océanique sur Terre, connectant les océans Atlantique, Pacifique et Indien. Ce courant régule en grande partie les échanges de chaleur, d’humidité, […]

Découverte d’un important réservoir d’hydrogène dans une mine souterraine en Albanie

Une équipe scientifique internationale impliquant des chercheurs de l’Institut des sciences de la Terre (ISTerre* – CNRS/IRD/UGA/Univ. Gustave Eiffel/USMB) et du GET, vient de découvrir en Albanie un réservoir d’hydrogène […]

Rechercher